# G.S.Mandal's

## Marathwada Institute of Technology, Aurangabad Department of Electronics and Telecommunication Engineering Subject: Signal and System Subject code: ETC254 Question bank Unit 1 Introduction to Signal and System

## Following are the two mark questions (2 mark)

- **Q.1.** Define signals & system.
- Q.2. Give condition to identify TV & TIV system.
- Q.3. Plot standard test signals.
- Q.4. Define deterministic & random signal.
- Q.5. State conditions to verify even/odd signals.
- Q.6. Define energy and power in mathematical form.

### Following are the six mark questions (6 mark)

- Q.1. Explain any four operations on signal.
- **Q.2.** With block dia. Explain following.
- i) Adder ii) Constant multiplier iii) Signal multiplier iv) Unit delay& unit advance
- **Q.3.** Prove that folding & time delaying or advancing of signal are not commutative operations for  $X(n) = \{1,1,1,1\}$
- Q.4. Give mathematical & graphical representation of following s/g.
  - 1) Signum function 2) Sinc function 3) Decaying exponential function 4) Triangular wave
- **Q.5.** For following system, check whether it is linear or non-linear.

i)y(n) = x(n) ii) y(n) = x(-n+2) iii) y(n) = x(-n) iv) y(n) = x(2n)

**Q.6.** Explain classification of system with example.

# Unit 2 System Analysis

# Following are the two mark questions (2 mark)

- **Q.1**. Enlist methods of convolution.
- Q.2 Define convolution. Gives its importance in system analysis.
- **Q.3.** What is LTI system? Explain.

## Following are the six mark questions (6 mark)

**Q.1.** Compute linear convolution by graphical method.

 $x(n) = \{ 1,2,1,2 \} h(n) = \{2,1,2,1 \}$ 

- Q.2. Explain convolution & its properties
- Q.3. Explain different methods of convolution.
- **Q.4.** Compute linear convolution by analytical method.

 $x(n) = \{ 1, 2, 1, 2 \} h(n) = \{1\}$ 

Q.5. Find convolution between ramp and unit step signal

## Unit 3

# CT and DT System analysis using Fourier transform

#### Following are the two mark questions (2 mark)

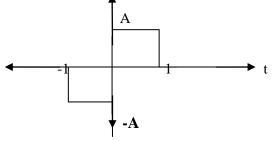
Q.1 Fourier transform of unit step signal.

**Q.2.** State any two properties of FT.

**Q.3**. Give condition for FT to exist.

#### Following are the six mark questions (6 mark)

Q.1. Express equation of quadrature Fourier series.


Q.2. Define and explain mathematical tool to convert time domain s/g. to frequency domain.

Q.3. Express eqn of complex exponential Fourier series.

Q.4. Write merits & demerits of FT.

**Q.5.**What is modulation properly of Fourier transform? Explain its importance in communication .

**Q.6.** Obtain Fourier series representation of given s/g.



# Unit 4 System analysis in Frequency domain using laplace transform

#### Following are the two mark questions (2 mark)

- **Q.1.** What is region of convergence (ROC).
- **Q.2.** What is transfer function.
- Q.3. Relationship between laplace transform and fourier transform.

## Following are the six mark questions (6 mark)

- Q.1. State and explain any four properties of laplace transform.
- **Q.2.** Find laplace transform of  $x(t) = e^{-at} \cos \omega t u(t)$

**Q.3.** The transfer function is given by  $H(s) = \frac{2S-1}{S^2+3S+2}$  find impulse response of a system.

**Q.4.** Find the laplace transform of  $x(t) = e^{-2t} u(t) - e^{2t} u(-t)$  and plot the ROC

**Q.5.** The transfer function is given by  $H(s) = \frac{S+1}{S^2+3S+2}$  find impulse response of a system.

**Q.6.** Find laplace transform of  $x(t) = e^{-at} \sin \omega t u(t)$ 

## Unit 5

## Correlation

## Following are the two mark questions (2 mark)

Q.1. Define correlation & correlogram .

- Q.2. How aliasing effect is eliminated in sampling process.
- Q.3. What is instantaneous & average normalized power?
- Q.4. State properties of autocorrelation.
- Q.5. State sampling theorem for band pass signal.
- Q.6. Give analogy in between autocorrelation & convolution.
- Q.7. What is value of autocorrelation of energy s/g at origin? Explain.
- Q.8. Prove that cross correlation is not commutative .

### Following are the six mark questions (6 mark)

- **Q.1.** Sketch correlogram of 2 sin t & 2 cost.
- **Q.2.** Determine auto correlation for sequence  $x(n) = \{0, 1, 2, 3\}$
- **Q.3.** Draw correlogram of sinusoidal signal.
- **Q.4.** Determine cross correlation of X1(n)=  $\{0,1,2,3\}$  X2 (n)= $\{1,2,1,2\}$
- Q.5. Prove that cross correlation in between two energy signal corresponding to multiplication
- of FT of one s/g & complex conjugate of FT of other s/g.

## Unit 6

# Energy spectral density and power spectral density

## Following are the two mark questions (2 mark)

- Q.1. State any two properties of ESD
- Q.2. Define ESD& PSD.
- **Q.3**. Define average normalized power.

## Following are the six mark questions (6 mark)

- Q.1. Prove that, autocorrelation function & PSD forms Fourier transform pair in power signal.
- Q.2. Properties of PSD
- Q.3. Application of ESD & PSD

# Q.4. Prove that, energy signal x(t), ESD & autocorrelation form FT pair.

**Q.5.** What is ESD? State and prove properties of ESD.

Mr.G.S.Zarkar Subject Teacher